Beta cell function in type 1 diabetes determined from clinical and fasting biochemical variables

Diabetologia

pp 1–8 | Cite as

- John M. Wentworth (1) (2) (3) Email author (wentworth@wehi.edu.au)
- Naiara G. Bediaga (1) (2)
- Lynne C. Giles (4)
- Mario Ehlers (5) (6)
- Stephen E. Gitelman (7)
- Susan Geyer (8)
- Carmella Evans-Molina (9)
- Leonard C. Harrison (1) (2)
- the Type 1 Diabetes TrialNet Study Group
- the Immune Tolerance Network Study Group

1. The Walter and Eliza Hall Institute of Medical Research, , Parkville, Australia
2. Department of Medical Biology, University of Melbourne, , Parkville, Australia
3. Department of Diabetes and Endocrinology, Royal Melbourne Hospital, University of Melbourne, , Parkville, Australia
4. School of Public Health, The University of Adelaide, , Adelaide, Australia
5. Clinical Trials Group, Immune Tolerance Network, , San Francisco, USA
6. Eli Lilly and Company, , San Diego, USA
7. University of California at San Francisco, , San Francisco, USA
8. University of South Florida, , Tampa, USA
9. Indiana University School of Medicine, , Indianapolis, USA

Article
First Online: 30 August 2018
Received: 20 June 2018
Accepted: 01 August 2018

- 78 Downloads

Abstract

Aims/hypothesis
Beta cell function in type 1 diabetes is commonly assessed as the average plasma C-peptide concentration over 2 h following a mixed-meal test (CP_{AVE}). Monitoring of disease progression and response to disease-modifying therapy would benefit from a simpler, more convenient and less costly measure. Therefore, we determined whether CP_{AVE} could be reliably estimated from routine clinical variables.

Methods

Clinical and fasting biochemical data from eight randomised therapy trials involving participants with recently diagnosed type 1 diabetes were used to develop and validate linear models to estimate CP_{AVE} and to test their accuracy in estimating loss of beta cell function and response to immune therapy.

Results

A model based on disease duration, BMI, insulin dose, HbA_{1c}, fasting plasma C-peptide and fasting plasma glucose most accurately estimated loss of beta cell function (area under the receiver operating characteristic curve [AUROC] 0.89 [95% CI 0.87, 0.92]) and was superior to the commonly used insulin-dose-adjusted HbA_{1c} (IDAA_{1c}) measure (AUROC 0.72 [95% CI 0.68, 0.76]). Model-estimated CP_{AVE} (CP_{EST}) reliably identified treatment effects in randomised trials. CP_{EST}, compared with CP_{AVE}, required only a modest (up to 17%) increase in sample size for equivalent statistical power.

Conclusions/interpretation

CP_{EST}, approximated from six variables at a single time point, accurately identifies loss of beta cell function in type 1 diabetes and is comparable to CP_{AVE} for identifying treatment effects. CP_{EST} could serve as a convenient and economical measure of beta cell function in the clinic and as a primary outcome measure in trials of disease-modifying therapy in type 1 diabetes.

Keywords

Adult Beta cell function Children Clinical trial Immune therapy
Immune Tolerance Network Linear model TrialNet Type 1 diabetes

Abbreviations

AIC

Akaike’s information criterion
AUROC

Area under the ROC curve

CP_{AVE}

Average plasma C-peptide concentration over 2 h following a mixed-meal test

CP_{EST}

Estimated CP_{AVE}

FCP

Fasting C-peptide

FPG

Fasting plasma glucose

IDAA_{1c}

Insulin-dose-adjusted HbA_{1c}

ITN

Immune Tolerance Network

ROC

Receiver operating characteristic

A list of members of the Type 1 Diabetes TrialNet Study Group and the Immune Tolerance Network Study Group can be found in the electronic supplementary material.

Electronic supplementary material

The online version of this article (https://doi.org/10.1007/s00125-018-4722-z) contains peer-reviewed but unedited supplementary material, which is available to authorised users.

This is a preview of subscription content, log in to check access.

Notes
Acknowledgements

We are grateful to the trial participants and to M. Ritchie (Molecular Medicine Division, Walter and Eliza Hall Institute, Australia) and A. Gorelik (Epicentre, Royal Melbourne Hospital, Australia) for statistical advice. We also thank the ITN and TrialNet investigators who contributed to original data, listed in the ESM.

Contribution statement

JMW devised the study. JMW, NGB, LCG and LCH analysed the data and prepared the manuscript. All named authors contributed to collection, collation, analysis and interpretation of the data, helped to revise the manuscript and approved it for publication. Authors listed in the ESM contributed by performing the TrialNet and ITN clinical trials. JMW is the guarantor and takes full responsibility for the work as a whole, including the study design, access to data and the decision to submit and publish the manuscript.

Funding

This work was supported by JDRF Australia (Clinical Practitioner Fellowship to JMW) and JDRF (Strategic Research Agreement to CE-M) and the Australian National Health and Medical Research Council (NHMRC) (Program Grant 1037321 to LCH and CRE 1078106 Fellowship to JMW). LCH is a Senior Principal Research Fellow of the NHMRC. This work was made possible through Victorian State Government Operational Infrastructure Support and Australian National Health and Medical Research Council Research Institute Infrastructure Support Scheme. This manuscript includes clinical and biochemical data provided by the TrialNet data repository from clinical trials TN-02, TN-05, TN-08, TN-09 and TN-14. TrialNet is currently funded by NIH grants U01 DK061010, U01 DK061034, U01 DK061042, U01 DK061058, U01 DK085461, U01 DK085465, U01 DK085466, U01 DK085476, U01 DK085499, U01 DK085509, U01 DK103180, U01 DK103153, U01 DK103266, U01 DK103282, U01 DK106984, U01 DK106994, U01 DK107013, U01 DK107014, UC4 DK106993, and the JDRF. Research reported in this publication was also performed as a project of the Immune Tolerance Network and was supported by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) and the National Institute of Allergy and Infectious Diseases (NIAID) of the National Institutes of Health under Award Number UM1AI109565. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The funding sources had no role in the writing of the manuscript or the decision to submit it for publication.

Duality of interest

SEG received funding from the Immune Tolerance Network (in turn funded by NIAID) for his role as principal investigator of the START trial (ITN–28). SG received a grant from NIDDK for unrelated work. All other authors declare that there is no duality of interest associated with their contribution to this manuscript.
Supplementary material

125_2018_4722_MOESM1_ESM.pdf (141 kb)
ESM (PDF 140 kb)
125_2018_4722_MOESM2_ESM.xlsx (17 kb)
ESM (XLSX 17 kb)

References

 CrossRef (https://doi.org/10.1111/dme.12100)
cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=23231526)
 PubMedCentral (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3580116)
 Google Scholar (http://scholar.google.com/scholar_lookup?

 CrossRef (https://doi.org/10.2337/dc07-2451)
cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18628574)
 PubMedCentral (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2551636)

 CrossRef (https://doi.org/10.1016/S0140-6736(11)60886-6)
cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=21719096)
 PubMedCentral (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3462593)
 Google Scholar (http://scholar.google.com/scholar_lookup?title=Co-stimulation%20modulation%20with%20abatacept%20in%20patients%20with%20recent-onset%20diabetes%20in%20a%20randomised%20double-blind%20placebo-

CrossRef (https://doi.org/10.2337/dc07-1459)

CrossRef (https://doi.org/10.2337/dc13-0425)
PubMedCentral (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3747899)

CrossRef (https://doi.org/10.1111/pedi.12609)

Google Scholar (http://scholar.google.com/scholar_lookup?title=The%2oinfluence%2of%2obody%2omass%20index%20and%20age%2on%20C-peptide%20at%2oth%2odiagnosis%20of%2otype%201%2odiabetes%20in%20children%20who%20participated%20in%2otype%201%2odiabetes%20prevention%20trial-type%201&author=JM.%2oSosenko&author=S.%2oGeyer&author=JS.%2oSkyler)

CrossRef (https://doi.org/10.2337/dc09-1349)
PubMedCentral (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2845036)

CrossRef (https://doi.org/10.1016/S0140-6736(11)60895-7)
PubMedCentral (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3580128)

CrossRef (https://doi.org/10.1016/S0140-6736(13)60023-9)

CrossRef (https://doi.org/10.1016/S2213-8587(13)70065-2)

CrossRef (https://doi.org/10.2337/db13-0345)
PubMedCentral (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3806618)

CrossRef (https://doi.org/10.1016/S2213-8587(13)70111-6)
PubMedCentral (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3957186)

CrossRef (https://doi.org/10.1056/NEJMct1113948)

CrossRef (https://doi.org/10.1002/dmrr.2800)
PubMedCentral (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5117187)

CrossRef (https://doi.org/10.1210/jc.2012-1561)

CrossRef (https://doi.org/10.2337/db11-1538)
PubMedCentral (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3402330)
Google Scholar (http://scholar.google.com/scholar_lookup?title=Fall%20in%20C-peptide%20during%20first%202%20years%20from%20diagnosis%3A%20evidence%20of%20at%20least%20two%20distinct%20phases%20from%20composite%20Type%201%20Diabetes%20TrialNet%20data&author=CJ.%20Greenbaum&author=CA.%20Beam&author=D.%20Boulware&journal=Diabetes&volume=61&pages=2066-2073&publication_year=2012)

CrossRef (https://doi.org/10.2337/dc16-0360)
PubMedCentral (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5033079)
CrossRef
PubMed
PubMedCentral
Google Scholar

CrossRef
PubMed
PubMedCentral
Google Scholar

CrossRef
PubMed
Google Scholar

CrossRef (https://doi.org/10.1172/JCI110398)
PubMedCentral (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC370948)

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

About this article

Cite this article as:

- DOI https://doi.org/10.1007/s00125-018-4722-z
- Publisher Name Springer Berlin Heidelberg
- Print ISSN 0012-186X
- Online ISSN 1432-0428

- About this journal
- Reprints and Permissions
Personalised recommendations

Published in cooperation with

European Association for the Study of Diabetes

Not logged in Not affiliated 198.233.237.1